
Test-Time Training
Done Right

Tianyuan Zhang
June 9th, 2025

ASAP Seminar Series:
Advances in Sequence modeling from Algorithmic Perspectives

Tianyuan Zhang

Bill Freeman

Sai Bi

Hao Tan

Fujun LuanKai Zhang

Yicong Hong

Kalyan Sunkavalli

Songlin Yang

Test-Time Training Done Right

https://tianyuanzhang.com/projects/ttt-done-right/

Outline

• What is Test-Time Training, and why Test-Time Training.

• What does “Test-Time Training Done Right” mean.

• Details and insights about “Test-Time Training Done Right”.

Test-Time Training Done Right

• 10x GPU FLOPs utilization.

• Without cumbersome kernel code.

Large online batch size (chunk-size) test-time training(LaCT)

What is Test-Time Training

• General meaning:

• Most current work focus on:

Current Training Paradigm

Pretraining:
Compress world knowledge

Post training:
Specialize in certain domain/behaviors

Test-time training:

Sun et al. https://yueatsprograms.github.io/ttt/home.html

What is Test-Time Training

• General meaning:
• One specific stage of learning.

• Most current work focus on:
• “Test-Time Training” for designing new sequence models

Akyürek et al. The Surprising Effectiveness of Test-Time Training for Few-Shot Learning. Arxiv 2024.11
Gandelsman et al. Test-Time Training with Masked Autoencoders. NeurIPS 2022.

“Sequence” to “Sequence” models

Neural
Networks

Seq
length
L

Text, images, videos, audios, DNAs etc.

Transformer

Transformers

Each token is involved in two types of computes:

1. Per-token independently: MLP
1. Cost: O(L)

2. Token communicate between each other: Attention
1. Cost: O(L^2)

Key-value
Cache

Query-token Output Token

1. For every new token:
1. O(n) memory
2. O(n) compute

2. No in-context compression
3. High parallelism

Attention: no in-context compression

One example of memory module

Keys

Values

Memory Module
(Try to memorize key-

value pairs)

Previous keys-values cache

Query-token Output Token

Memory Update

Memory Query

Test-Time Training for new sequence models

• Input Sequence: 𝒙 = 𝑥!, 𝑥", … , 𝑥# , 𝑥$ ∈ R%
• Each token will be split into query (𝑞) , key (𝑘), value (𝑣)

• Fast weight function: 𝑓& ⋅ ∶ R% → R%
• 𝑊 as the online adapted weight, which stores memory
• 𝑓! could be neural networks, linear, MLP, or even a transformer.

Memory Update as online gradient descent

𝑊 = 𝑊 − ∇&𝐿(𝑓& 𝑘 , 𝑣)

• Common online objectives:
• Key-Value Association:

• 𝐿!"# = −𝑓$ 𝑘 %𝑣
• 𝐿& = 𝑓$ 𝑘 − 𝑣 &

&

Memory Update as online gradient descent

Keys

Values

Memory Module
(A fast-weight MLP)

Retrieved values

Memory Update as online gradient descent

Keys

Values

Memory Module
(A fast-weight MLP)

Retrieved values

Compute L2 loss

Memory Update as online gradient descent

Keys

Values

Memory Module
(A fast-weight MLP)

Retrieved values

Compute L2 loss

Gradient

Gradient

Memory query (called apply)

• 𝑜 = 𝑓&(𝑞)

Fast weight MLP as memory

Keys

Values

Memory Module
(Try to memorize key-

value pairs)

Previous keys-values cache

Query-token Output Token

Fast weight MLP as memory

Keys

Values

Memory Module
(Try to memorize key-

value pairs)

Query-token

Update:
𝑊 = 𝑊 − ∇!𝐿(𝑓! 𝑘 , 𝑣)

Apply:
𝑜 = 𝑓!(𝑞)

TTT Opens a vast Design Space

• Fast weight functions.

• Test-time training objectives.

• Test-time training optimizers.

Second-order gradients?

Forward	Pass
• 𝑊 = 𝑊 − ∇&𝐿(𝑓& 𝑘 , 𝑣)
• 𝑜 = 𝑓&(𝑞)

Gradient flows

Hardware friendly Test-Time Training

Hardware friendly: Tensor cores

[m, k] @ [k, n] -> [m, n]. k>=16

989 TFLOPS for dense matmuls

Hardware friendly: Tensor cores

• Tensor core only do 2D matmul
• [M, K] @ [K, N] -> [M, N].
• For H100 with bf16, smallest K should be 16
• ∇!𝐿(𝑓! 𝑘 , 𝑣) contains lot’s of matrix-vector multiplication.

• Online minibatch size >= 16.
• ∑∇!𝐿(𝑓! 𝑘/ , 𝑣/)

Sun et al. Learning to (Learn at Test Time): RNNs with Expressive Hidden States. Arxiv 2024.07
Behrouz et al. Titans: Learning to Memorize at Test Time. arxiv 2025.01

Hardware friendly: compute intensity

Compute/Memory: 012!

12!3452
< ttt-batch-size

989 TFLOP/S / 3.35TB/s = 295 FLOPs per byte

Hardware friendly: parallelism over
sequence dimension

• All potential parallelism dimension:
• Batch
• Feature Dimension (heads)
• Sequence Length

• Restricted to the ttt-batch size!

All previous discussion leads to a common solution:
Use large test-time training batch size (we call it chunk-size)

Large chunk TTT is hardware friendly

• 2D matmuls

• High compute intensity

• High degree of parallelism

All previous discussion leads to a common solution:
Use large test-time training batch size (we call it chunk-size)

2k – 1 million tokens in our experiment

• 2D matmuls

• High compute intensity

• High degree of parallelism

Large chunk TTT is hardware friendly

More importantly, Pytorch code is enough:
No kernel codes: error prone, slower research iteration not all researcher can
write kernel code

About data topology

• Set within chunk

• Causal between chunks

• Natively suitable for: sequence of set

Positional encoding and window-attention would help

Locality handled by sliding window attention

• Attention is efficient and effective
for locality in the data

• Leave the TTT’s limited state size
to handle long memory

Arora et al. Simple linear attention language models balance the recall-throughput tradeoff. 2024
Hua et al. Transformer quality in linear time. ICML 2022
Munkhdalai et al. Leave no context behind: Efficient infinite context transformers with infini-attention. 2024

Details on SwiGLU-MLP as fast weight
Fast Weight Function:

Online training objectives:

GD with weight-norm:

Details on SwiGLU-MLP as fast weight

Experiments

• Novel View Synthesis
• Set of images

• Language models
• 1D order sequence

• Autoregressive video generation
• Sequence of images

LaCT for language model

• Chunk-structure in language?
• Chunk size as hyper-params:

• 2048 or 4096

• Per-token causality
• Handled by sliding window attention

Orders between “apply” and “update”

Update𝑊"

Apply

Update

Apply

(a) Block-Wise Causal Mask

Update𝑊"

Apply

Update

Apply

(b) Shifted Block-Wise Causal Mask

Window-Attention Mask

TTT Mask

Overall LaCK Mask

UpdateW Update

ApplyApply

Sliding Window Attention

LaCT for language model

Details on sliding window attention

Hua et al. Transformer Quality in Linear Time. ICML 2022

Baselines

Details:
1. RoPE base: 1M.
2. GLA: no output gate. Value has full dimension
3. DeltaNet: no short conv.
4. Extra params: < 3%.

Zhang, Yu and Yang, Songlin. https://github.com/fla-org/flame

● Two scales:
○ 760M model with 40B text tokens.

■ Seq len: 32k
■ SWA size = chunk size = 2048

○ 3B model with 60B text tokens.
■ Seq len: 32k
■ SWA size = chunk size = 4096

● Evaluation:
○ Measure validation loss on different token positions
○ S-NIAH

Experiment setup

Dataset: togethercomputer/Long-Data-Collections

Transformer Transformer SWA GLA SWA DeltaNet SWA Ours MuonOurs Momentum

3B param experiment760M param experiment

Transformer Transformer SWA GLA SWA DeltaNet SWA Ours MuonOurs Momentum

760M S-NIAH-1 3B S-NIAH-2

State Size Scaling

Novel View Synthesis

• Input:
• Multiview posed images
• Camera pose of novel views

• Outputs:
• Novel views.

Why novel view synthesis?

• “Smart retrieval” task:
• Retrieval: all information about novel view are provided in current

sequence.
• Smart: certain level of 3D reasoning is needed.

• “Compression” rather than “Global-Random-Access”.
• Support various sequence length.

1. A small-sized model is good enough => Fast research iteration
2. Golden metrics exist => Effective research iteration

Input view tokens Target view query tokens

Memory Module
(A fast-weight MLP)

Update Memory

Output

LaCT for novel-view-synthesis

per-image
local attention

Target view
Plucker Rays

Input posed image

Query memory

per-image
local attention

Update

Apply

W

Apply

Win
Attn

Win
Attn

Win
Attn

Win
Attn

Window Attention:
Block-wise Mask

TTT Mask

Overall LaCT Mask

Input
Image 1

Input
Image 2

Novel
Pose 1

Novel
Pose 2

Novel
Image 1

Novel
Image 2

* Layers

Prefill Decode

Prefill and Decode

● Memory update => Prefill

● Memory readout => Decode.
○ Decoding is fixed cost.
○ 37 FPS on A100 for 512x512 images.

Baseline

• Full-Attention
• Replace LaCT with two attentions:

• Input tokens self-attention.
• Novel view tokens cross-attend to Input tokens.

• Register Attention (Perceiver-style)
• Replace LaCT with two attentions:

• Input – register full attention
• Novel view tokens cross-attend to register tokens.

Prefill:
Decode:

Prefill:
Decode:

Baseline

Speed tested on A100 with 48 512x512 input images => 196K image tokens

Experiment setup

Object dataset:
4-48 images
Resolution: 256x256 or 512x512

Scene dataset:
16-128 images
Resolution: 960x536

Results on object dataset

48 views
48 views

8 views
8 views

Results on scene dataset

LaCT for auto-regressive video diffusion

…

History context frames Noisy next frames

Denoise

Teacher forcing training or AR video diffusion

…

Clean frame
T=1

Noisy frame
T=1

Clean frame
T=2

Noisy frame
T=2

Noisy frame
T=N

Time

Interleaved sequence

Teacher forcing training or AR video diffusion

…

Clean frame
T=1

Noisy frame
T=1

Clean frame
T=2

Noisy frame
T=2

Noisy frame
T=N

Time

LaCT for AR video: Only update fast weight on clean frames

Interleaved sequence

LaCT for AR video diffusion

Clean1 Noise2 Clean2 Noise3 Clean3 Noise4 Clean4 Noise5

W_0 Update

Apply Apply

Update

Apply Apply

Update

Apply Apply

Update

Apply Apply

Target 1 Target 2 Target 3 Target 4

AR video experiment setup

• Finetune a bidirectional video model to AR video model
• Wan T2V: small: 1.3B, big:14B

• Finetune for 5k iterations on internal text-video dataset

• Measure validation loss at different frame chunks

Video results

6 frames per window

4 frames per window

Transformer OursMamba SWATransformer SWA

Interesting studies

● State Size Scaling

● Different optimizers

● Chunk-recurrence v.s. per-token recurrence

● Linear v.s. NonLinear fast weight function

State Size Scaling

Different test-time training optimizers

Chunk-recurrence v.s. token recurrence

● Trading depth-of-recursion for parallelism

Chunk-recurrence v.s. token recurrence

Chunk-recurrence v.s. token recurrence

Linear Memory v.s. NonLinear Memory

Summary

● Large chunk-size TTT boost GPU utilization by 10x
● No kernel code => much faster research exploration
● Using TTT for long memory, using window attention for local memory

