Test-Time Training Done Right

Tianyuan Zhang June 9th, 2025

ASAP Seminar Series:

Advances in Sequence modeling from Algorithmic Perspectives

Test-Time Training Done Right

Tianyuan Zhang

Yicong Hong

Kai Zhang

Fujun Luan

Songlin Yang

Kalyan Sunkavalli Bill Freeman

Hao Tan

https://tianyuanzhang.com/projects/ttt-done-right/

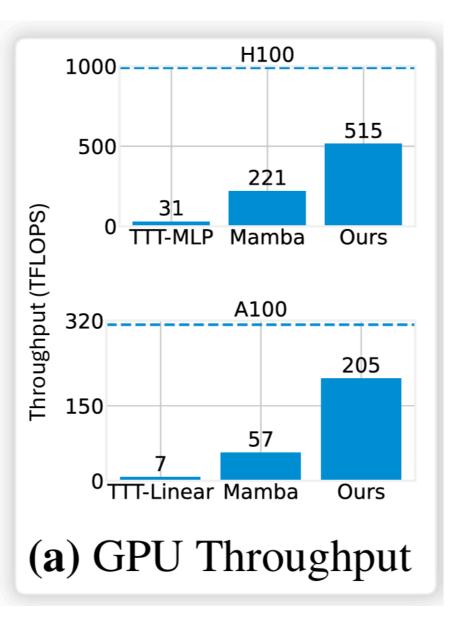
Outline

- What is Test-Time Training, and why Test-Time Training.
- What does "Test-Time Training Done Right" mean.
- Details and insights about "Test-Time Training Done Right".

Test-Time Training Done Right

- 10x GPU FLOPs utilization.
- Without cumbersome kernel code.

Large online batch size (chunk-size) test-time training(LaCT)



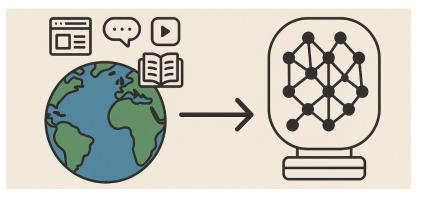
What is Test-Time Training

• General meaning:

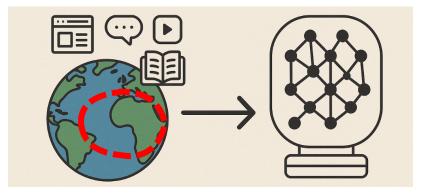
• Most current work focus on:

Current Training Paradigm

Pretraining: Compress world knowledge

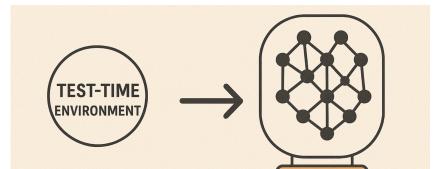


Post training: Specialize in certain domain/behaviors



Test-time training:

Sun et al. https://yueatsprograms.github.io/ttt/home.html



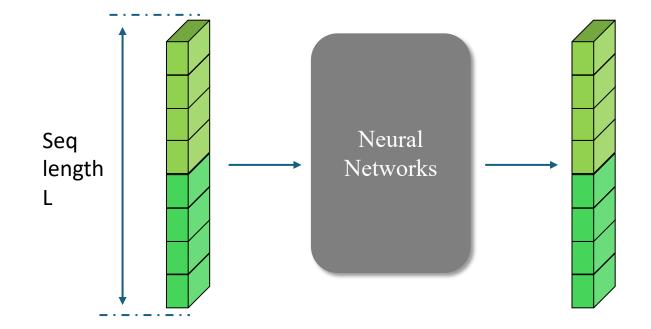
What is Test-Time Training

- General meaning:
 - One specific stage of learning.

Akyürek et al. The Surprising Effectiveness of Test-Time Training for Few-Shot Learning. Arxiv 2024.11 Gandelsman et al. Test-Time Training with Masked Autoencoders. NeurIPS 2022.

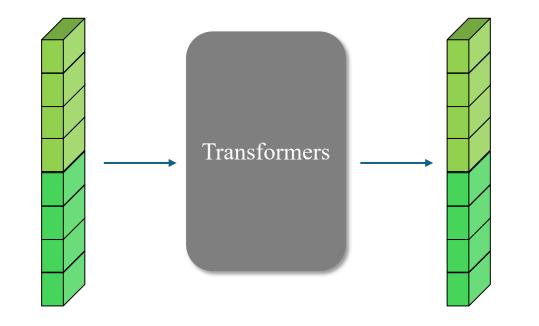
- Most current work focus on:
 - "Test-Time Training" for designing new sequence models

"Sequence" to "Sequence" models



Text, images, videos, audios, DNAs etc.

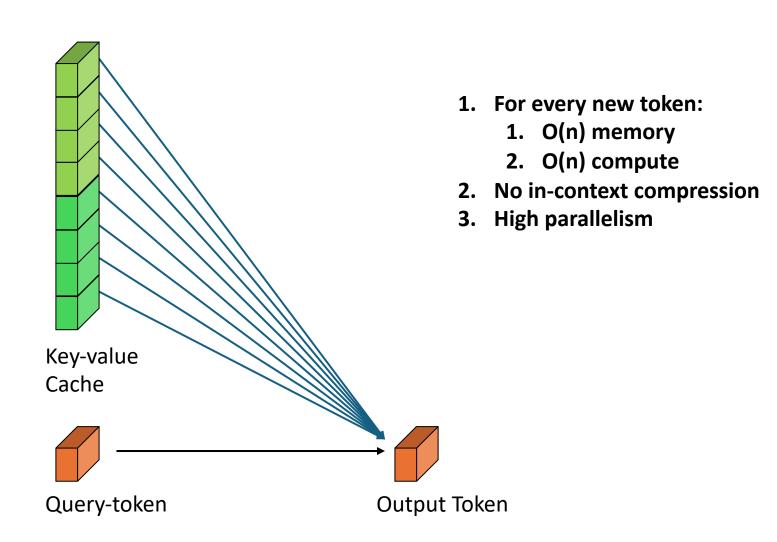
Transformer



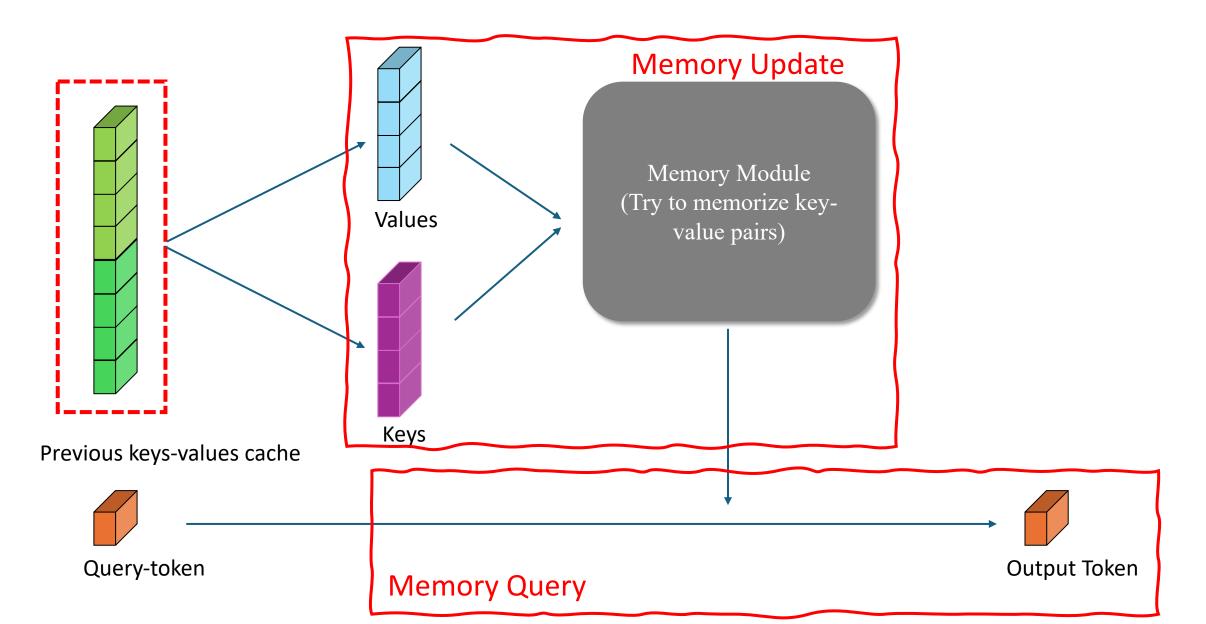
Each token is involved in two types of computes:

- 1. Per-token independently: MLP
 - 1. Cost: O(L)
- 2. Token communicate between each other: Attention
 - 1. Cost: O(L^2)

Attention: no in-context compression



One example of memory module



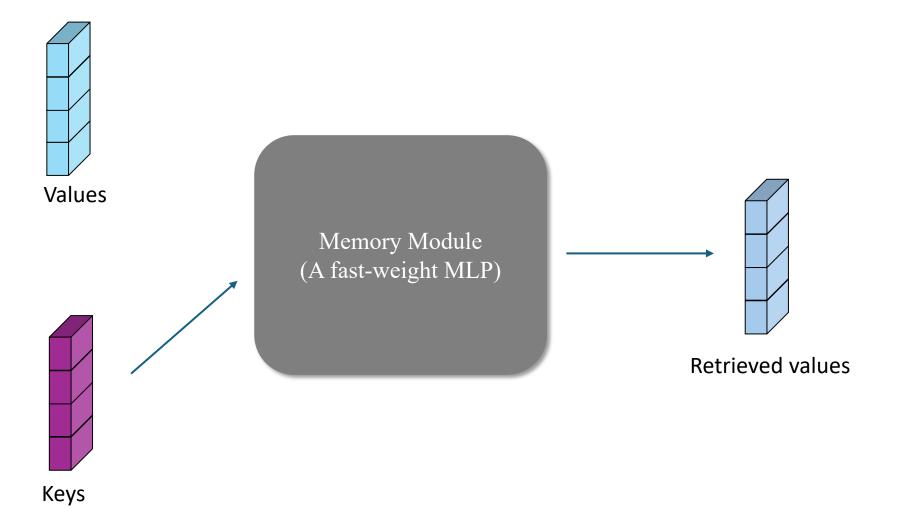
Test-Time Training for new sequence models

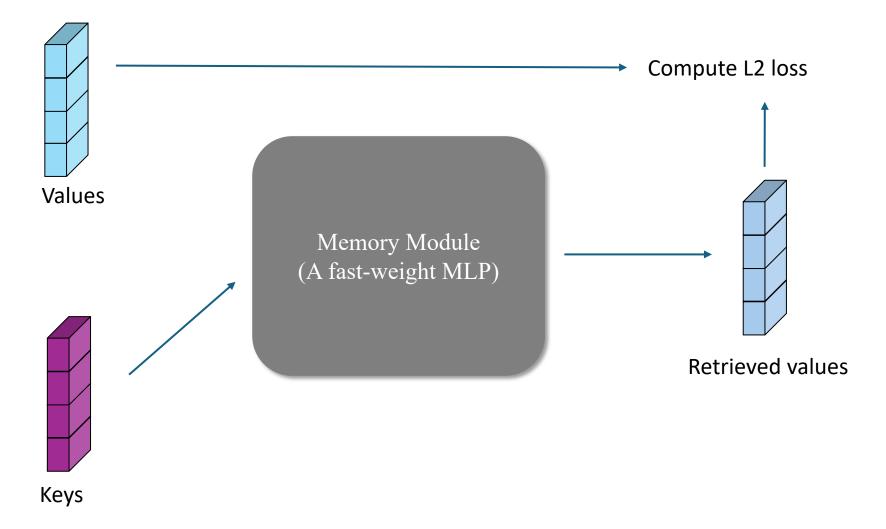
- Input Sequence: $\mathbf{x} = [x_1, x_2, ..., x_N], x_i \in \mathbb{R}^d$
 - Each token will be split into query (q), key (k), value (v)

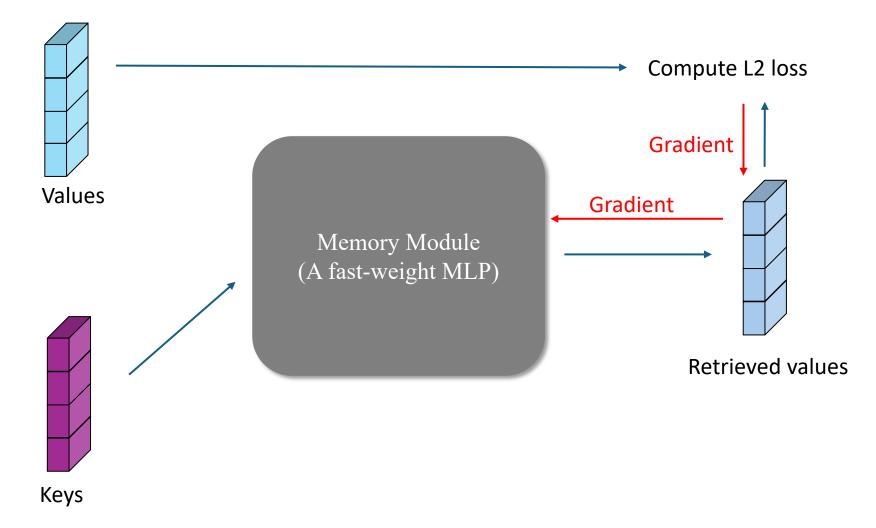
- Fast weight function: $f_W(\cdot)$: $\mathbb{R}^d \to \mathbb{R}^d$
 - W as the online adapted weight, which stores memory
 - f_W could be neural networks, linear, MLP, or even a transformer.

$$W = W - \nabla_W L(f_W(k), v)$$

- Common online objectives:
 - Key-Value Association:
 - $L_{\text{dot}} = -f_W(k)^T v$
 - $L_2 = |f_W(k) v|_2^2$



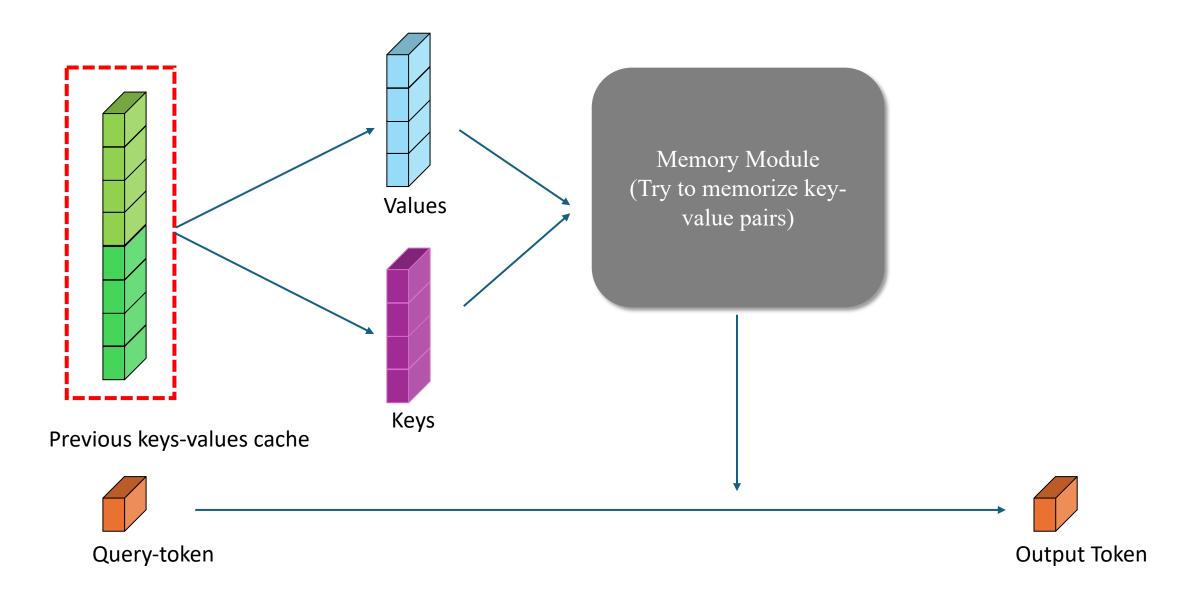




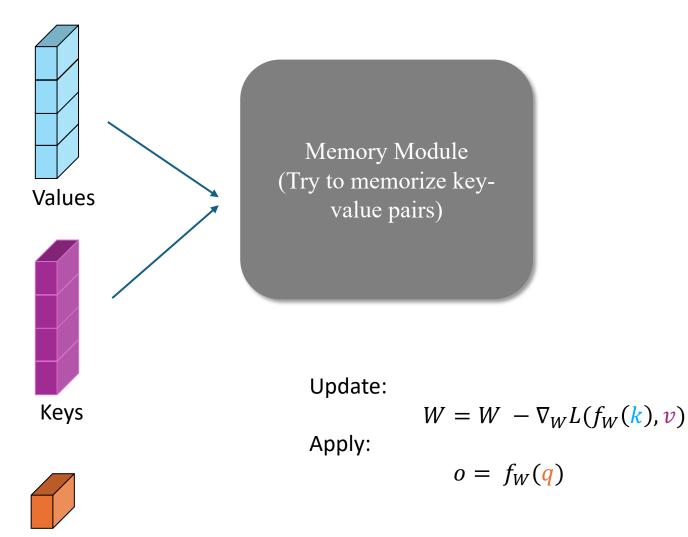
Memory query (called apply)

•
$$o = f_W(q)$$

Fast weight MLP as memory



Fast weight MLP as memory

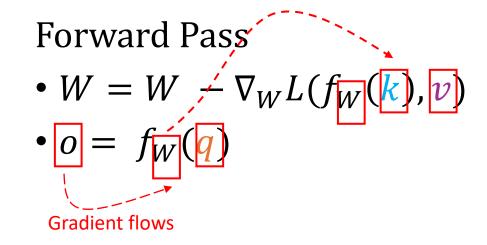


Query-token

TTT Opens a vast Design Space

- Fast weight functions.
- Test-time training objectives.
- Test-time training optimizers.

Second-order gradients?



Hardware friendly Test-Time Training

Hardware friendly: Tensor cores

	Technical Specifications		
		H100 SXM	
	FP64	34 teraFLOPS	
	FP64 Tensor Core	67 teraFLOPS	
	FP32	67 teraFLOPS	
_	TF32 Tensor Core*	989 teraFLOPS	_
	BFLOAT16 Tensor Core*	1,979 teraFLOPS	J
	FP16 Tensor Core*	1,979 teraFLOPS	•
	FP8 Tensor Core*	3,958 teraFLOPS	
	INT8 Tensor Core*	3,958 TOPS	
	GPU Memory	80GB	
	GPU Memory Bandwidth	3.35TB/s	
	Decoders	7 NVDEC 7 JPEG	
	Max Thermal Design Power (TDP)	Up to 700W (configurable)	

989 TFLOPS for dense matmuls

[m, k] @ [k, n] -> [m, n]. k>=16

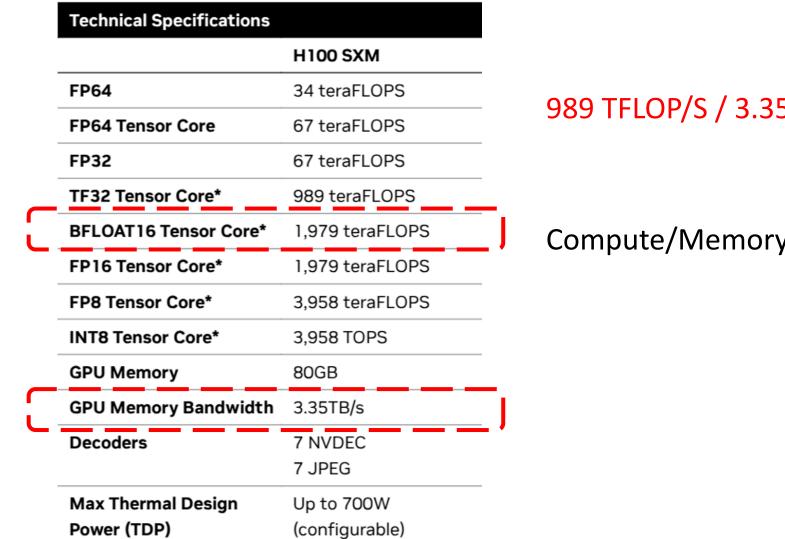
Hardware friendly: Tensor cores

- Tensor core only do 2D matmul
 - [M, K] @ [K, N] -> [M, N].
 - For H100 with bf16, smallest K should be 16
 - $\nabla_W L(f_W(k), v)$ contains lot's of matrix-vector multiplication.

- Online minibatch size >= 16.
 - $\sum \nabla_W L(f_W(k_i), v_i)$

Sun et al. Learning to (Learn at Test Time): RNNs with Expressive Hidden States. Arxiv 2024.07 Behrouz et al. Titans: Learning to Memorize at Test Time. arxiv 2025.01

Hardware friendly: compute intensity



989 TFLOP/S / 3.35TB/s = 295 FLOPs per byte

Compute/Memory:
$$\frac{32d^2}{2d^2+64d}$$
 < ttt-batch-size

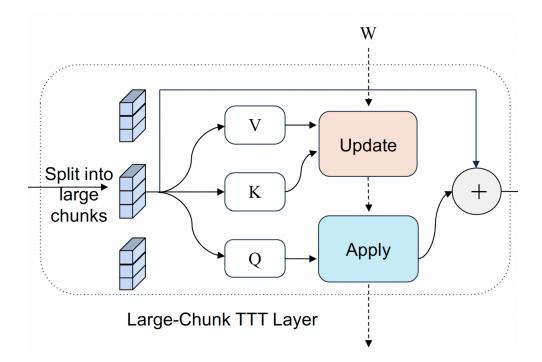
Hardware friendly: parallelism over sequence dimension

- All potential parallelism dimension:
 - Batch
 - Feature Dimension (heads)
 - Sequence Length
 - Restricted to the ttt-batch size!

All previous discussion leads to a common solution: Use large test-time training batch size (we call it chunk-size)

Large chunk TTT is hardware friendly

- 2D matmuls
- High compute intensity
- High degree of parallelism

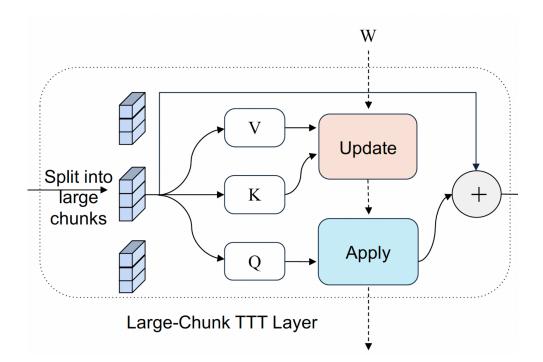


All previous discussion leads to a common solution: Use large test-time training batch size (we call it chunk-size)

2k – 1 million tokens in our experiment

Large chunk TTT is hardware friendly

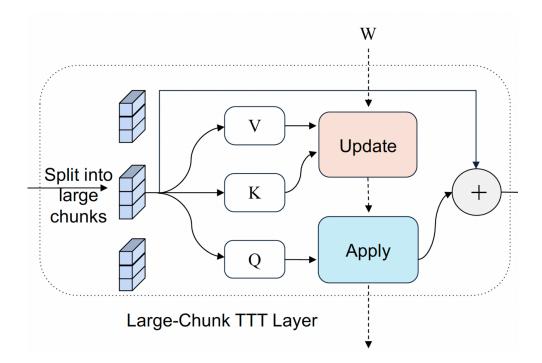
- 2D matmuls
- High compute intensity
- High degree of parallelism



More importantly, Pytorch code is enough: No kernel codes: error prone, slower research iteration not all researcher can write kernel code

About data topology

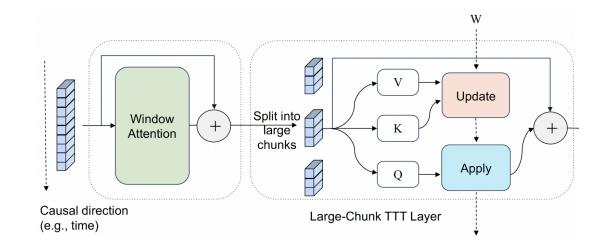
- Set within chunk
- Causal between chunks
- Natively suitable for: sequence of set



Positional encoding and window-attention would help

Locality handled by sliding window attention

- Attention is efficient and effective for locality in the data
- Leave the TTT's limited state size to handle long memory



Arora et al. Simple linear attention language models balance the recall-throughput tradeoff. 2024 Hua et al. Transformer quality in linear time. ICML 2022 Munkhdalai et al. Leave no context behind: Efficient infinite context transformers with infini-attention. 2024

Details on SwiGLU-MLP as fast weight

Fast Weight Function:

$$f_W(x) = W_2\left[\operatorname{SiLU}(W_1 x) \circ (W_3 x)\right]$$

Online training objectives:

$$\mathcal{L}(f_W(k_i), v_i) = -f_W(k_i)^\top v_i$$

GD with weight-norm:

weight-update
$$(W, g) = L2$$
-Normalize $(W - g)$.

Details on SwiGLU-MLP as fast weight

Experiments

- Novel View Synthesis
 - Set of images

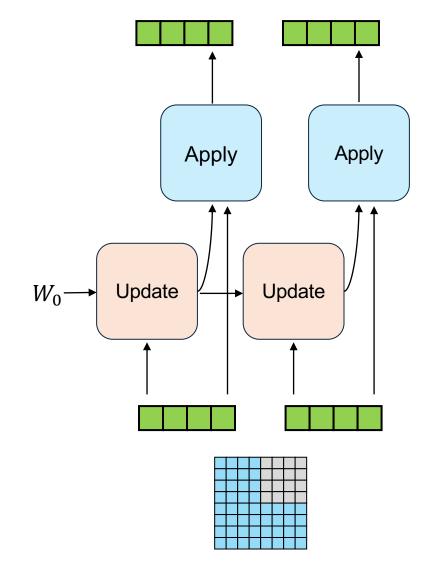
- Language models
 - 1D order sequence

- Autoregressive video generation
 - Sequence of images

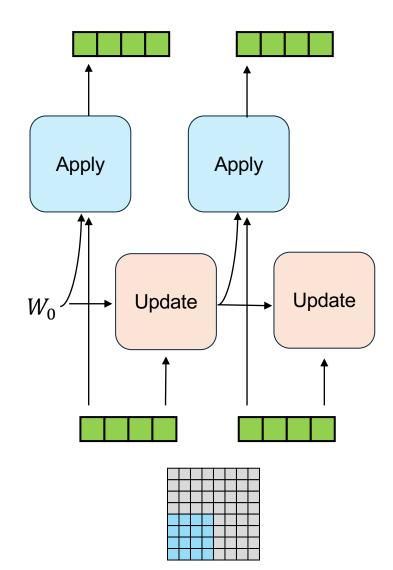
LaCT for language model

- Chunk-structure in language?
 - Chunk size as hyper-params:
 - 2048 or 4096
- Per-token causality
 - Handled by sliding window attention

Orders between "apply" and "update"

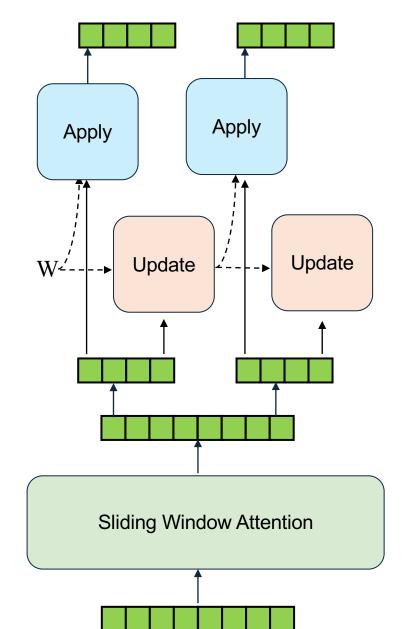


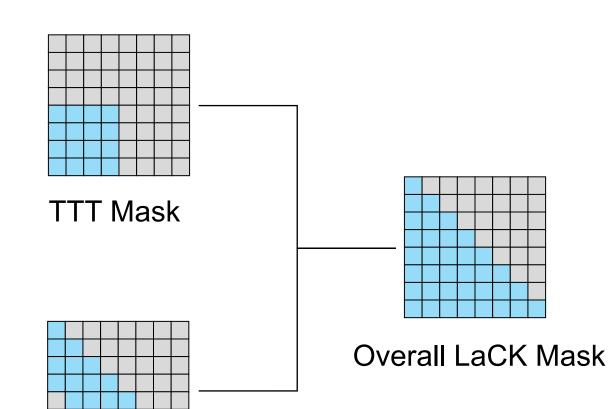
(a) Block-Wise Causal Mask



(b) Shifted Block-Wise Causal Mask

LaCT for language model





Window-Attention Mask

Details on sliding window attention

q, k, v = LinearQKV(x).split(3)

Local quadratic-cost window attention

attn_q = q * learnable_q_scale + learnable_q_offset # per-channel rescale and shift attn_k = k * learnable_k_scale + learnable_k_offset # per-channel rescale and shift attn_o = local_softmax_multihead_attn(attn_q, attn_k, v, attn_mask)

Baselines

	State size	Train TPS	Update Rule	Memory read-out
Transformer	_	4.1K	_	_
Transformer SWA	_	6.4K	_	_

Details:

1. RoPE base: 1M.

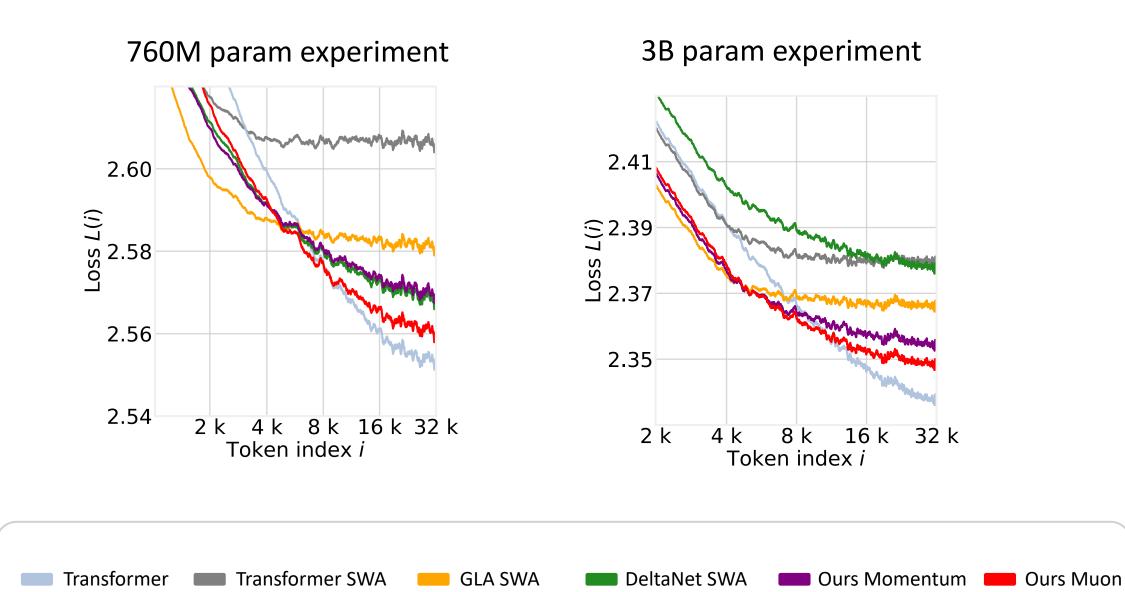
- 2. GLA: no output gate. Value has full dimension
- 3. DeltaNet: no short conv.
- 4. Extra params: < 3%.

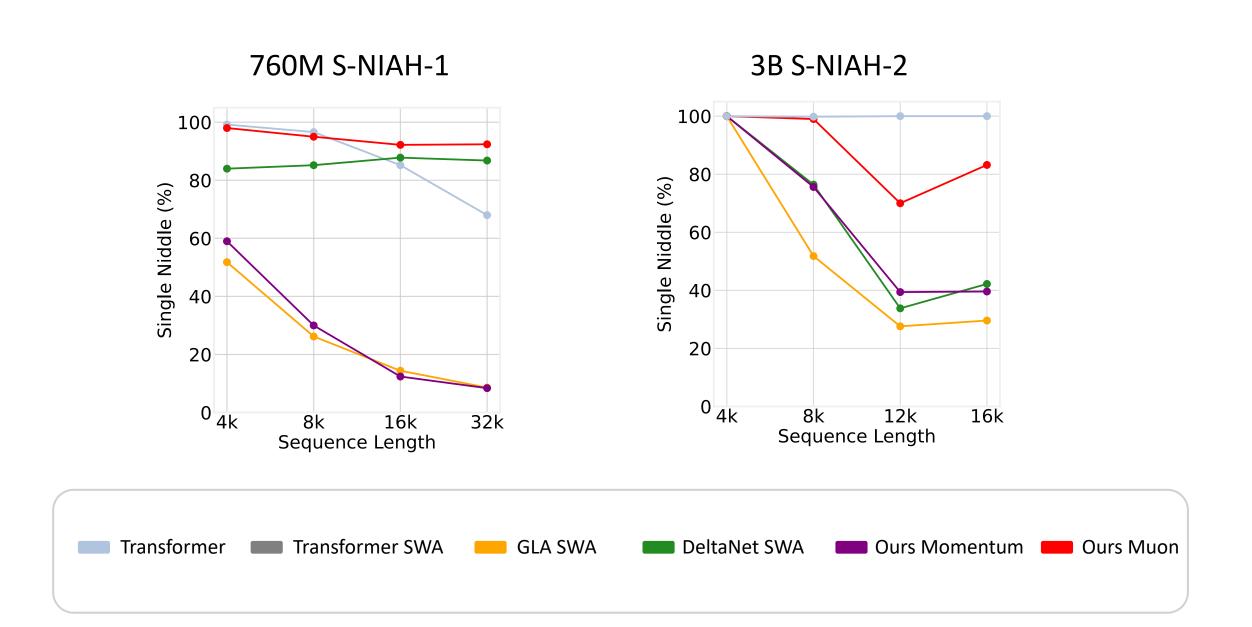
Zhang, Yu and Yang, Songlin. https://github.com/fla-org/flame

Experiment setup

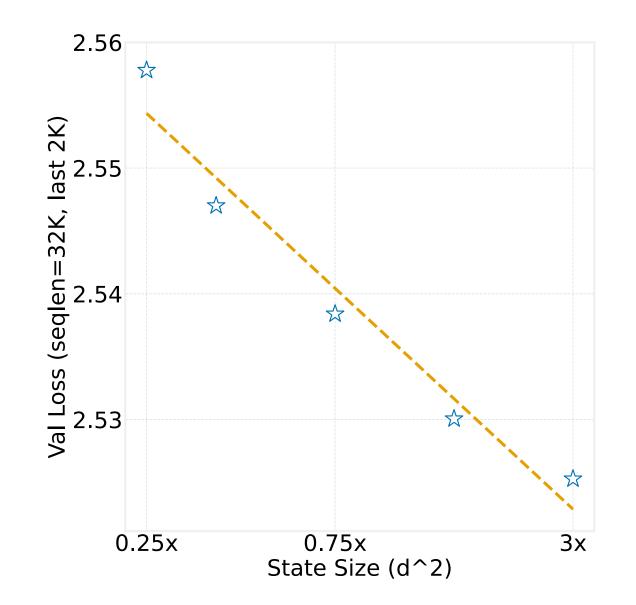
- Two scales:
 - 760M model with 40B text tokens.
 - Seq len: 32k
 - SWA size = chunk size = 2048
 - 3B model with 60B text tokens.
 - Seq len: 32k
 - SWA size = chunk size = 4096
- Evaluation:
 - Measure validation loss on different token positions
 - S-NIAH

Dataset: togethercomputer/Long-Data-Collections





State Size Scaling



Novel View Synthesis

- Input:
 - Multiview posed images
 - Camera pose of novel views
- Outputs:
 - Novel views.

Office DEPOT, Dell'Series 11
Provident photon for disordering programm and/o manufic community and/or simple This proceedings constrained I indust constrained on
reconciliandanetaread From many de control manharit

Why novel view synthesis?

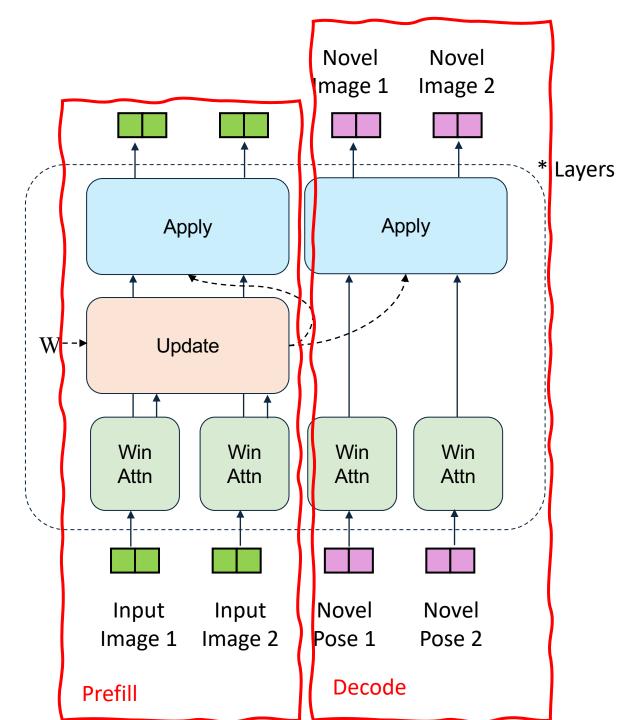
- "Smart retrieval" task:
 - Retrieval: all information about novel view are provided in current sequence.
 - Smart: certain level of 3D reasoning is needed.
- "Compression" rather than "Global-Random-Access".
- Support various sequence length.

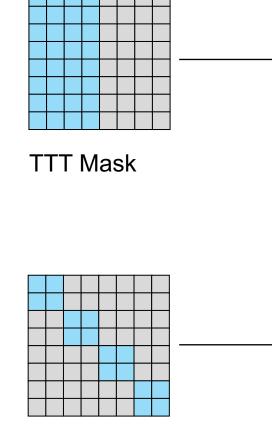
- 1. A small-sized model is good enough => Fast research iteration
- 2. Golden metrics exist

=> Effective research iteration

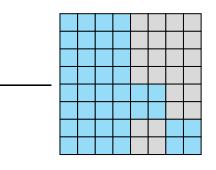
per-image local attention Output Update Memory Query memory Memory Module (A fast-weight MLP) per-image local attention Input posed image Input view tokens Target view Target view query tokens Plucker Rays

LaCT for novel-view-synthesis





Window Attention: Block-wise Mask



Overall LaCT Mask

Prefill and Decode

- Memory update => Prefill
- Memory readout => Decode.
 - Decoding is fixed cost.
 - $_{\circ}$ 37 FPS on A100 for 512x512 images.

Baseline

• Full-Attention

- Replace LaCT with two attentions:
- Prefill: Input tokens self-attention.
- **Decode:** Novel view tokens cross-attend to Input tokens.

	State Size	Prefill Compute	Decoding Compute	
Full attention $O(n)$		$O(n^2)$	O(n)	

- Register Attention (Perceiver-style)
 - Replace LaCT with two attentions:
- Prefill: Input register full attention
- **Decode:** Novel view tokens cross-attend to register tokens.

Baseline

	State Size	Prefill Compute	Decoding Compute	# Params	Prefill speed	Rendering FPS
Full attention	O(n)	$O(n^2)$	O(n)	284M	16.1 s	2.3 FPS
Perceiver Attention	O(1)	$O(n^2)$	O(1)	287M	16.8 s	34.4 FPS
Ours	O(1)	O(n)	O(1)	312M	1.4 s	38.7 FPS

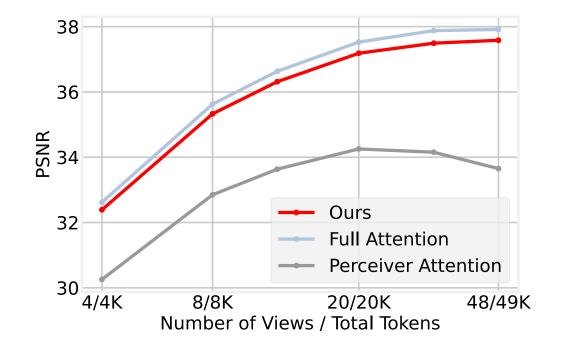
Speed tested on A100 with 48 512x512 input images => 196K image tokens

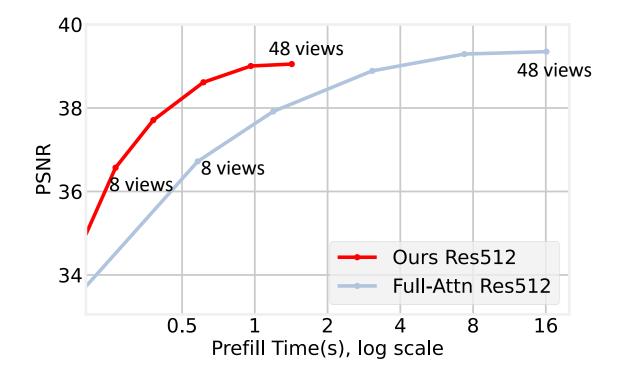
Experiment setup

Object dataset: 4-48 images Resolution: 256x256 or 512x512

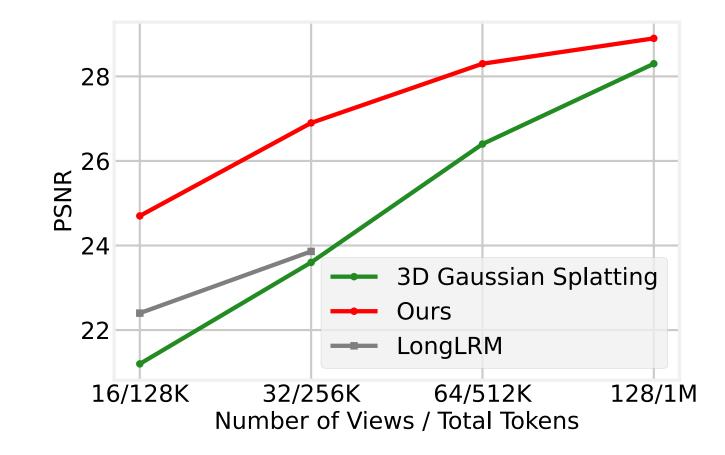
Scene dataset: 16-128 images Resolution: 960x536

Results on object dataset





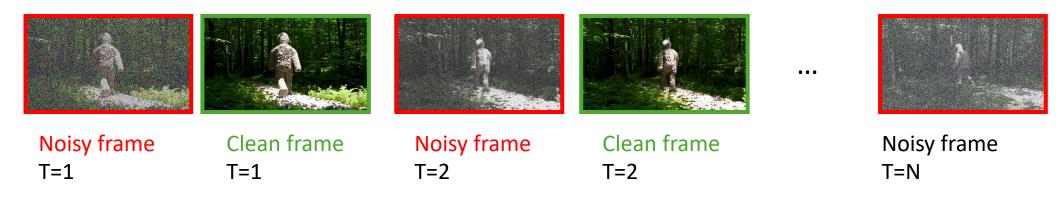
Results on scene dataset



LaCT for auto-regressive video diffusion

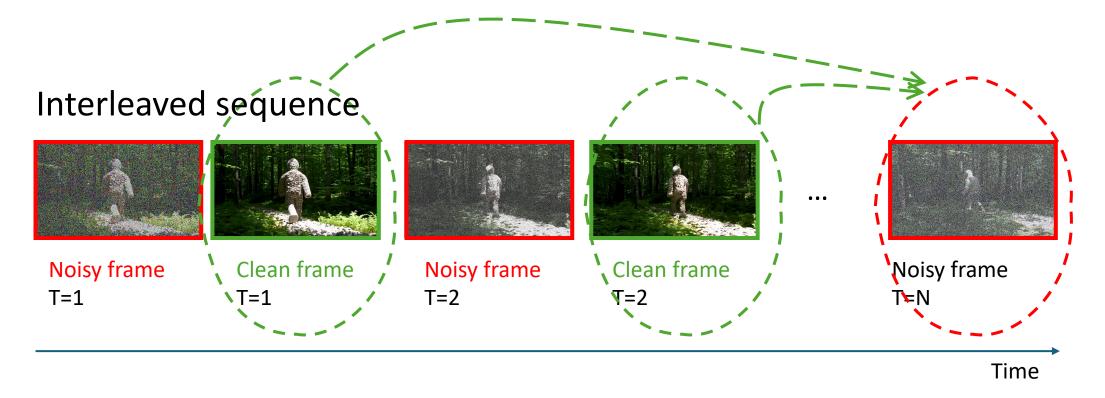
Teacher forcing training or AR video diffusion

Interleaved sequence



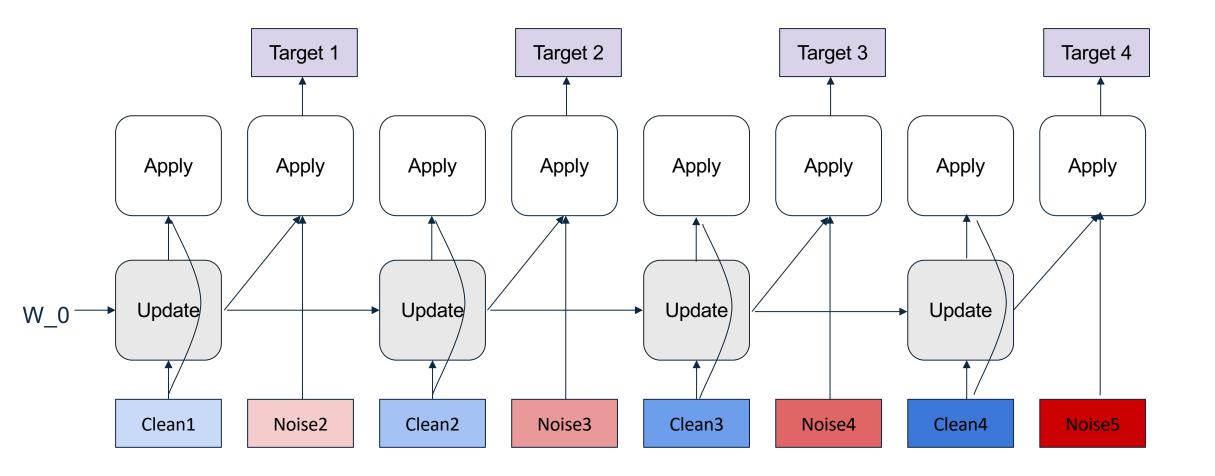
Time

Teacher forcing training or AR video diffusion



LaCT for AR video: Only update fast weight on clean frames

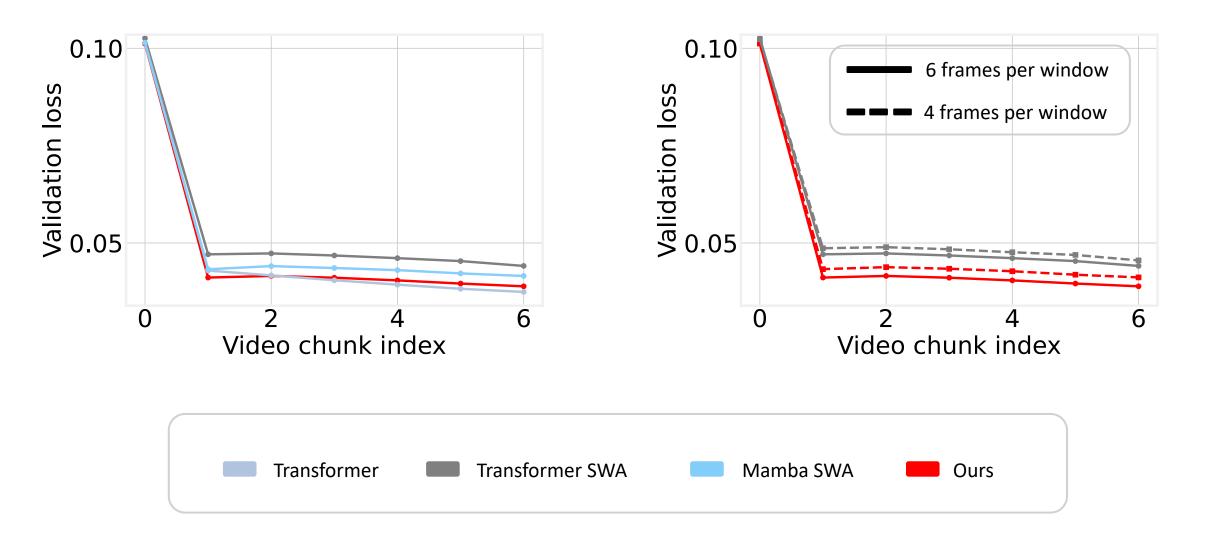
LaCT for AR video diffusion



AR video experiment setup

- Finetune a bidirectional video model to AR video model
 - Wan T2V: small: 1.3B, big:14B
- Finetune for 5k iterations on internal text-video dataset
- Measure validation loss at different frame chunks

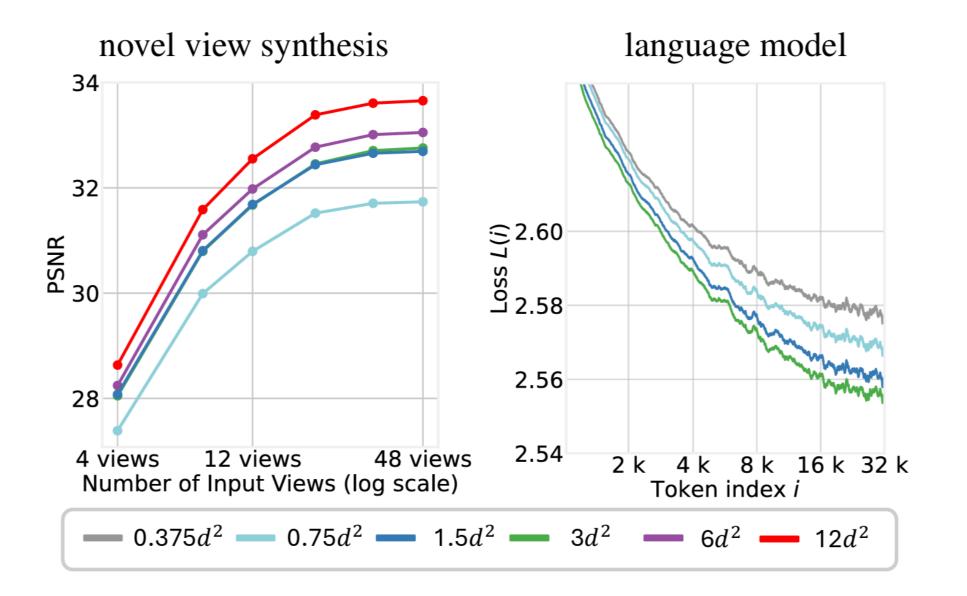
Video results



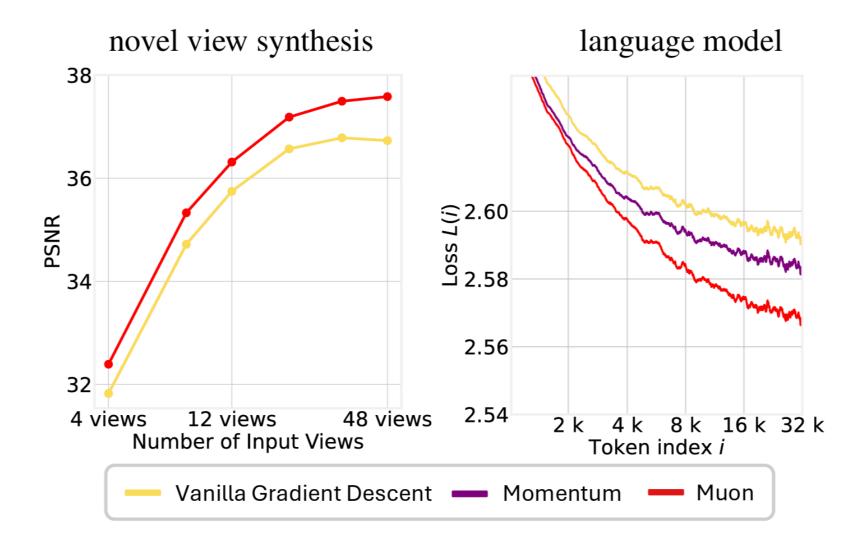
Interesting studies

- State Size Scaling
- Different optimizers
- Chunk-recurrence v.s. per-token recurrence
- Linear v.s. NonLinear fast weight function

State Size Scaling



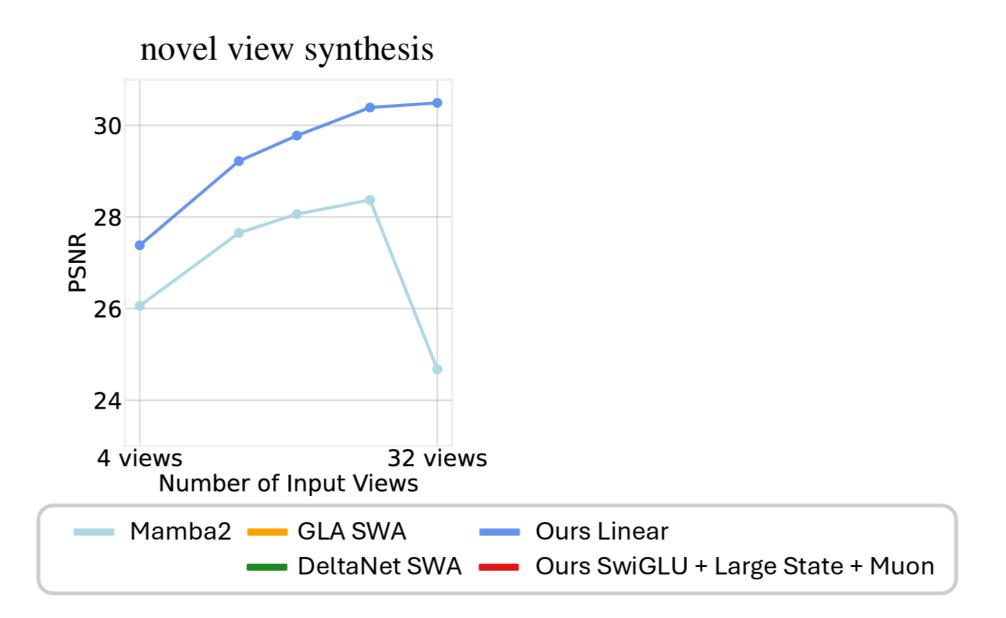
Different test-time training optimizers



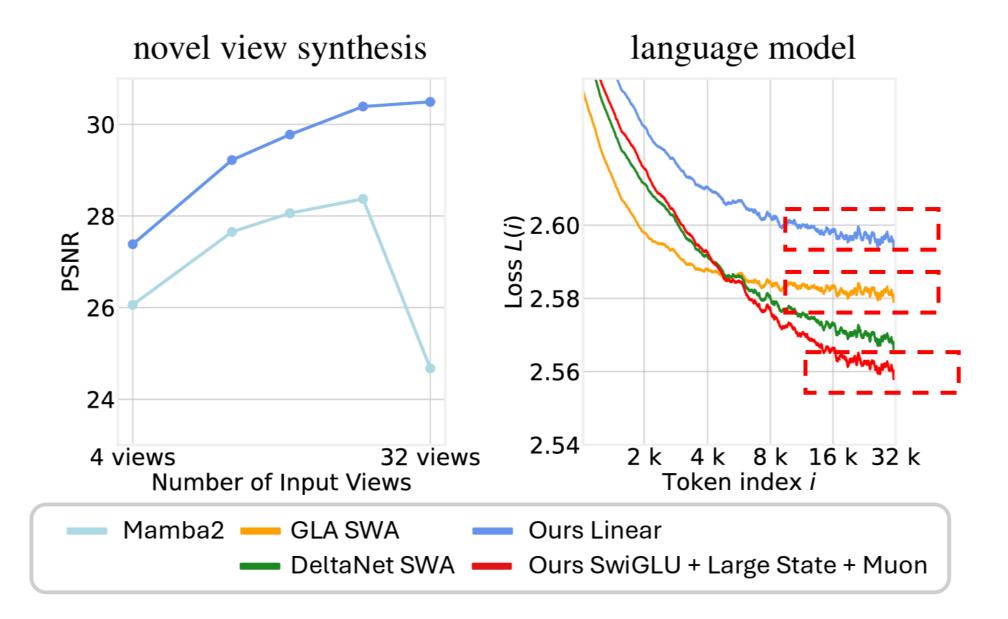
Chunk-recurrence v.s. token recurrence

• Trading depth-of-recursion for parallelism

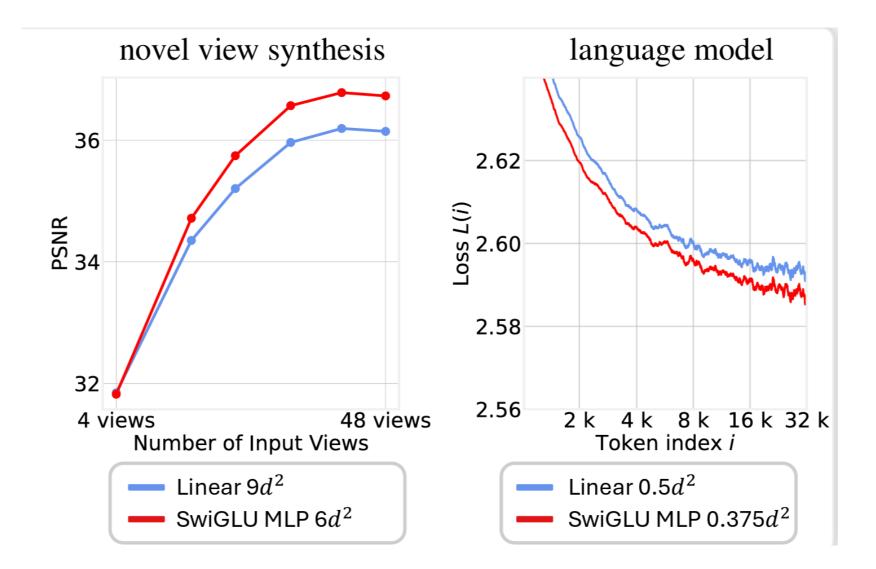
Chunk-recurrence v.s. token recurrence



Chunk-recurrence v.s. token recurrence



Linear Memory v.s. NonLinear Memory



Summary

- Large chunk-size TTT boost GPU utilization by 10x
- No kernel code => much faster research exploration
- Using TTT for long memory, using window attention for local memory